Умножение комплексных чисел в тригонометрической форме записи

Опубликовано: 5 мая 2009.

п.5. Умножение комплексных чисел в тригонометрической форме записи. Свойства модуля комплексных чисел.

Теорема. (Об умножении комплексных чисел в тригонометрической форме записи.)

 Пусть , где  и , где  – два произвольных комплексных числа записанных в тригонометрической форме. Тогда

.                 (13)

   Доказательство.

, ч.т.д.

Теорема доказана.

Отсюда вытекает правило умножения комплексных чисел в тригонометрической форме записи.

Для того, чтобы перемножить два комплексных числа в тригонометрической форме записи нужно перемножить их модули, а аргументы сложить.

Следствие 1. Пусть k натуральное число и . Пусть далее , где  – произвольные n комплексных чисел записанных в тригонометрической форме записи. Тогда

.

   Доказательство проводится индукцией по числу сомножителей и предоставляется читателю.

Следствие 2. Пусть n натуральное число и  – произвольное комплексное число в тригонометрической форме записи. Тогда

.

   Доказательство сразу же следует из Следствия 1.

Теорема. (Свойства модуля комплексного числа.)

Пусть  – произвольные комплексные числа и соответствующие точки на комплексной плоскости. Тогда:

1)  и . Т.е. модуль произведения комплексных чисел равен произведению их модулей и модули противоположных чисел равны;

2) расстояние между точками  и  комплексной плоскости равно модулю разности соответствующих комплексных чисел:  ;

3) ;

4) ;

   Доказательство. 1) По предыдущей теореме имеем:

, где  и ,

т.е. .

   Таким образом, равенства  и  есть тригонометрическая форма записи числа , следовательно, по теореме о равенстве комплексных чисел в тригонометрической форме записи, имеем , ч.т.д.

   Далее, т.к. , то по только что доказанному свойству , ч.т.д.

   Заметим, что последнее равенство можно получить и из других соображений.

   Противоположные числа на комплексной плоскости изображаются точками симметричными относительно начала координат. Действительно, пусть . Тогда  и точки ,  имеют противоположные декартовые координаты. Значит, в силу симметрии, расстояния от этих точек до начала координат равны, т.е. , ч.т.д. Заметим, также, что такой же результат можно получить с помощью формулы (12) вычисления модуля комплексного числа.

2). Пусть , . Тогда  и по формуле (12) имеем:

            .                      (14)

   С другой стороны, рассмотрим числа  и  как точки на комплексной плоскости. Тогда точка  имеет декартовые координаты ,  а  и искомое расстояние между ними вычисляется по формуле (14), ч.т.д.

3) Рассмотрим на комплексной плоскости точки ,  и начало координат О. В общем случае эти три точки являются вершинами треугольника :

                     

                                          рис.6.

   Воспользуемся известным свойством треугольника: длина стороны треугольника не превосходит суммы длин двух его других сторон.

   Мы только что доказали, что длина стороны  этого треугольника равна , а длины сторон  и  равны по определению модулям чисел  и : , . Отсюда и получаем, что .

   Заменим в последнем  неравенстве число  на противоположное число , тогда получаем:

, ч.т.д.

   Заметим, что равенство в этих неравенствах достигается тогда и только тогда, когда треугольник вырождается в отрезок прямой, т.е. когда все три точки О,  и  лежат на одной прямой.

4) , откуда следует

. Поменяв местами  и , получаем

, откуда и следует доказываемое неравенство.

Теорема доказана.

   Теория комплексных чисел имеет много приложений в различных областях математики. Не могу удержаться от искушения привести хотя бы один такой пример, относящийся к области теории чисел.

Определение. Говорят, что натуральное число n представимо в виде суммы двух квадратов, если существуют такие целые числа х и у, что выполняется равенство:

                                       .

Теорема. Если два числа представимы в виде суммы двух квадратов, то их произведение также представимо в виде суммы двух квадратов.

   Доказательство. Пусть  и , где .

   Нам нужно доказать, что найдутся два целых числа а и b такие, что .

   С этой целью рассмотрим два комплексных числа  и .

   Тогда  и по формуле (12) имеем: .

   С другой стороны, , . Так как , то  или , то отсюда получаем равенство: , где , ч.т.д.

Теорема доказана.

twitter.com facebook.com vkontakte.ru odnoklassniki.ru mail.ru ya.ru blogger.com liveinternet.ru livejournal.ru google.com yandex.ru del.icio.us

Оставьте комментарий!

Яндекс.Метрика