Произведения векторов в координатной форме
п.5. Смешанное и векторное произведения векторов в координатной форме.
Теорема. Пусть ,
,
. Тогда:
1) ;
2) .
Доказательство. 1) Используем свойство линейности векторного произведения:
.
Далее, заметим, что векторные произведения коллинеарных векторов равны нулевому вектору:
.
Рассмотрим другие векторные произведения базисных векторов:
рис.4.
,
,
.
Эти равенства легко устанавливаются с помощью рис.4.
Отсюда следует:
, ч.т.д.
2) Воспользуемся только что доказанной формулой:
.
Теперь, по теореме о скалярном произведении векторов в координатной форме, получаем:
, ч.т.д.
Теорема доказана.
Замечание. Векторное произведение часто записывают в форме определителя:
.
Разумеется это не определитель, а лишь форма записи векторного произведения. Она компактна и удобна для запоминания.
Следствие. Определитель не изменяется при круговой перестановке строк (столбцов) определителя. При транспозиции двух строк (столбцов) определитель меняет знак.
Доказательство. С одной стороны,
.
С другой стороны,
.
Но, , откуда и следует утверждение. Далее, т.к.
, то
.
Так как определитель не изменяется при транспонировании, то доказанное свойство справедливо и для столбцов определителя.
Следствие доказано.
Оставьте комментарий!